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Abstract

We study the problem of scheduling a single server that processes n jobs in a two-machine flow
shop environment. A machine dependent setup time is needed whenever the server switches from
one machine to the other. The problem with a given job sequence is shown to be reducible to a
single machine batching problem. This result enables several cases of the server scheduling problem
to be solved in Oðn log nÞ by known algorithms, namely, finding a schedule feasible with respect to
a given set of deadlines, minimizing the maximum lateness and, if the job processing times are
agreeable, minimizing the total completion time. Minimizing the total weighted completion time is
shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algo-
rithms are presented for minimizing the weighted number of late jobs. Minimizing the number
of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct
due dates. This problem is solved in Oðn3Þ time when all job processing times on the first machine
are equal, and it is solved in Oðn4Þ time when all processing times on the second machine are
equal.

AMS Subject Classifications: 90B35.

Keywords: Scheduling, batching, algorithms, dynamic programming.

1. Introduction

The problem of scheduling a single server in a two-machine flow shop can be
formulated as follows. There are n independent non-preemptive jobs to be
scheduled for processing by a server on two sequential machines. The server
can be a human operator or a robot. Each job j requires two operations ð1jÞ
and ð2jÞ, which are performed on machines 1 and 2, respectively. The
processing time of job j on machine l, i.e., the duration of the operation ðljÞ, is
plj, l ¼ 1; 2. For each job, the second operation cannot be started before the
first operation is completed. A setup time sl is needed before the first job is
processed on machine l or when the server switches from machine 3� l to
machine l. Each processing operation and each setup operation must be per-
formed by the server, which can only perform one operation at a time. In this
case, a schedule can be described by the job sequences on machines 1 and 2
and their partitions into batches, where a batch is a maximal set of jobs
scheduled contiguously on the same machine. Each batch on machine l is
preceded by the setup time sl:
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Given a schedule, the job completion times Cj; j ¼ 1; . . . ; n; are easily determined.
The completion time of a job is the time when its processing is finished on ma-
chine 2. Moreover, for each job j, one can determine its lateness Lj ¼ Cj � dj;
where dj is the due date or deadline of job j, and tardiness Tj ¼ maxf0;Ljg:

The problem is to find a schedule that is feasible with respect to the deadlines such
that Cj � dj; j ¼ 1; . . . ; n; or which minimizes a performance criterion depending
on the job completion times. We consider the following performance criteria:

maximum lateness Lmax ¼ maxfLjg;

maximum tardiness Tmax ¼ maxfTjg;

maximum cost fmax ¼ maxffjðCjÞg, where fj; j ¼ 1; . . . ; n; are non-decreasing cost
functions;

(weighted) number of late jobs
P
ðwjÞUj, where wj > 0 is the weight of job j

indicating its relative importance, and Uj ¼ 0 if job j is early(Cj � dj) and Uj ¼ 1
if job j is late (Cj > dj);

total (weighted) tardiness
P
ðwjÞTj;

total (weighted) completion time
P
ðwjÞCj.

Here and below each maximum or summation is assumed to be taken over all jobs
unless stated otherwise. All numerical parameters and function values are as-
sumed to be non-negative integers. All the above performance criteria are regular,
i.e., they are non-decreasing in job completion times.

The model studied in this paper combines three scheduling aspects: flow shop
scheduling, server scheduling and batch scheduling.

Prior results for classical flow shop scheduling models are presented by Conway,
Maxwell and Miller [13], Baker [3], Coffman [11]. More recent results are reported
by Lawler et al. [21], Brucker [5], Blazewicz et al. [4], Pinedo and Chao [23].

There exist results for server scheduling models. However, these previously
studied models assume that each operation consists of two phases: the setup phase
and the processing phase. The server is responsible for the setup phase only. Such
models are studied by Koulamas [19], Kravchenko and Werner [18], Glass,
Shafransky and Strusevich [15], Hall, Potts and Sriskandarajah [16], Cheng,
Wang and Sriskandarajah [10], Brucker et al. [6] and Brucker, Knust and Wang
[8].

Reviews of batch scheduling research are provided by Potts and Van Wassenhove
[25], Webster and Baker [28], Allahverdi, Gupta and Aldowaisan [2], and Potts
and Kovalyov [24].

The model studied in this paper arises wherever the processing of items on se-
quential machines requires the continuous presence of a server. In spite of the fact
that solving corresponding problems implies finding partitions of the sequences of
jobs into batches, this model differs from other popular batch scheduling models
such as the family scheduling model, batch availability model, batch delivery
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model, multi-operation job model and batching machine model, see Potts and
Kovalyov [24]. We, however, show that there exist some relationships between
this model and the batch availability model. In the batch availability model, all
jobs assigned to the same batch complete together when the latest job of the batch
finishes its processing.

We call a job sequence ði1; i2; . . . ; inÞ partitioned into batches B1; . . . ;Br in this
order a batch sequence and denote it by ðB1; . . . ;BrÞ: Thus, a schedule is com-
pletely characterized by the batch sequences on machines 1 and 2.

The standard job shift technique can be used to prove the following.

Lemma 1. For the server scheduling problem to minimize any regular performance
criterion, there exists an optimal schedule in which the batch sequences are identical
on both machines.

In the following, we consider only schedules satisfying Lemma 1. We call such
schedules batching schedules. An example of a batching schedule for seven jobs is
given in Fig. 1.

In Sect. 2, we show that, when the job sequence is fixed, the server scheduling
problem with various performance criteria reduce to the single machine batching
problem with the same performance criteria. This result allows us to establish that
the following cases of the problem are solvable in Oðn log nÞ time: finding a
schedule feasible with respect to the deadlines, minimizing Lmax and minimizingP

Cj, if the job processing times are agreeable, i.e., the jobs can be re-indexed in
the shortest processing time (SPT) order such that pl1 � pl2 � � � � � pln; l ¼ 1; 2:
The algorithm for the feasibility problem can also be used to minimize the
maximum cost in polynomial time. On the other hand, the minimization ofP

wjCj is shown to be NP-hard in the strong sense. However, this problem is
solvable in OðnÞ time when the job sequence is fixed. The problem of minimizingP

wjUj is studied in Sect. 3. Two pseudopolynomial dynamic programming al-
gorithms are derived for this problem. When all weights are equal, one of the
algorithms runs in Oðn3Þ time if all processing times p1j are equal and the other
algorithm runs in Oðn4Þ time if all processing times p2j are equal. If p1j and p2j are
arbitrary, then minimizing

P
Uj is proved to be NP-hard even if s1 ¼ s2 and there

are two distinct due dates.

Fig. 1. Batching schedule S ¼ ðB1;B2Þ with batches B1 ¼ ð1; 2; 3Þ and B2 ¼ ð4; 5; 6; 7Þ

Scheduling a Single Server in a Two-machine Flow Shop 169



2. Given or Easy to Find Optimal Job Sequence

In this section, we assume that, for the specific case of the server scheduling
problem under study, either an optimal job sequence can be efficiently found or a
job sequence is given.

Let ð1; . . . ; nÞ be the given (optimal) job sequence. The problem reduces to par-
titioning the sequence into subsequences corresponding to batches.

Consider a batch sequence S ¼ ðB1; . . . ;BrÞ, where Bk ¼ ðak�1 þ 1; ak�1 þ 2; . . . ;
akÞ is the batch sequenced k-th, k ¼ 1; . . . ; r; a0 ¼ 0: For this sequence, the
completion time of job j assigned to batch Bk can be calculated as follows:

CjðSÞ ¼ kðs1 þ s2Þ þ
Xak

i¼1
p1i þ

Xj

i¼1
p2i: ð1Þ

We now formulate a single machine batching problem with a given job sequence.
There are n independent non-preemptive jobs with processing times pj and due
dates (or deadlines) d̂dj; j ¼ 1; . . . ; n. The job sequence ð1; . . . ; nÞ has to be parti-
tioned into batches, each preceded by a setup time s, so as to minimize a per-
formance criterion depending on the job completion times ĈCj; j ¼ 1; . . . ; n. Here
job completion times are defined according to the batch availability model such
that ĈCj ¼ ĈCðBÞ for all jobs j in batch B, where ĈCðBÞ is the time when the machine
finishes processing all jobs in batch B.

Define L̂LjðSÞ ¼ ĈCjðSÞ � d̂dj; L̂Lmax ¼ maxfL̂Ljg; T̂TjðSÞ ¼ maxf0; L̂LjðSÞg; T̂Tmax ¼
maxfT̂Tjg; ÛUjðSÞ ¼ 0 if ĈCj � d̂dj and ÛUjðSÞ ¼ 1 if ĈCj > d̂dj.

It is evident from Eq. (1) that, for the same batch sequence S, CjðSÞ ¼ ĈCjðSÞ þ gj;
LjðSÞ ¼ L̂LjðSÞ, TjðSÞ ¼ T̂TjðSÞ, and UjðSÞ ¼ ÛUjðSÞ, where gj ¼

Pj
i¼1 p2i; d̂dj ¼ dj � gj,

s ¼ s1 þ s2 and pj ¼ p1j, j ¼ 1; . . . ; n. So, for the same batch sequence,

X
wjCj ¼

X
wjĈCj þ

X
wjgj;

X
wjUj ¼

X
wjÛUj;

X
wjTj ¼

X
wjT̂Tj; Lmax ¼ L̂Lmax; Tmax ¼ T̂Tmax:

It follows that, when either the job sequence can be optimally determined or is
given, the server scheduling problem of finding a schedule feasible with respect to
the deadlines or minimizing

P
wjCj,

P
wjUj;

P
wjTj or Lmax is equivalent to the

corresponding single machine batching problem.

In particular, for minimizing
P

wjCj when the job sequence is fixed, one can use
the OðnÞ algorithm suggested by Albers and Brucker [1], which is to formulate and
solve a special shortest path problem.

For the maximum lateness criterion, the pairwise job interchange technique can
be used to prove the following.

Lemma 2. For the problem of minimizing Lmax, there exists an optimal batching
schedule in which the jobs are sequenced in the earliest due date (EDD) order.

170 T. C. E. Cheng and M. Y. Kovalyov



Re-number the jobs so that d1 � � � � � dn. The problems of finding a schedule
feasible with respect to the deadlines, and minimizing Lmax or Tmax reduce to
partitioning the sequence ð1; . . . ; nÞ into batches.

Hochbaum and Landy [17] give an OðnÞ procedure to solve the single machine
batching problem of partitioning a given sequence ð1; . . . ; nÞ into batches so that
the resulting schedule is feasible with respect to the deadlines ðĈCj � d̂dj;
j ¼ 1; . . . ; nÞ, if any such schedule exists. In their approach, jobs 1; 2; . . . are as-
signed to the first batch until its earliest deadline d1 is exceeded. Then the second
batch is started. This process is repeated until all jobs are assigned to batches or
some job j cannot be assigned to the current batch or to the new batch without
violating a deadline.

This procedure can be combined with a bisection search to solve the problem of
minimizing the maximum cost fmax in Oðn logðu� vÞ log PÞ time, where u and v are
lower and upper bounds, respectively, for the minimum fmax value and
P ¼ nðs1 þ s2Þ þ

Pn
j¼1ðp1j þ p2jÞ. In each iteration of the bisection search proce-

dure, the question if fmax � k has to be answered for a trial value k 2 ½v; u�: The
latter inequality is equivalent to Cj � tj; j ¼ 1; . . . ; n; where tj can be found in
Oðlog PÞ by a bisection search in the range ½0; P � of Cj values for each j,
j ¼ 1; . . . ; n: More details of such an approach can be found, for example, in
Brucker et al. [7].

Wagelmans and Gerodimos [29] describe an Oðn log nÞ algorithm to solve the
single machine batching problem of minimizing L̂Lmax: It can be used to solve our
problem with the Lmax criterion. Notice that the EDD sequence ð1; . . . ; nÞ such
that d1 � � � � � dn must be taken as the input for the algorithm of Wagelmans and
Gerodimos.

We now study the problem of minimizing the total completion time
P

Cj under
the assumption that the job processing times are agreeable. Consider an arbitrary
job sequence. To simplify the notation, let the sequence be ð1; . . . ; nÞ: As before,
consider batch sequence S ¼ ðB1; . . . ;BrÞ, where Bk ¼ ðak�1 þ 1; ak�1 þ 2; . . . ; akÞ
is the batch sequenced k-th, k ¼ 1; . . . ; r; a0 ¼ 0: For this sequence, the total
completion time can be calculated as follows. Denote by bk the cardinality of the
k-th batch: bk ¼ jBkj.
X

CjðSÞ ¼
Xr

k¼1

X

j2Bk

kðs1 þ s2Þ þ
Xak

i¼1
p1i þ

Xj

i¼1
p2i

 !

¼ ðs1 þ s2Þ
Xr

k¼1
kbk þ

Xr

k¼1

X

j2Bk

p1j

Xr

i¼k

bi þ p2jðn� jþ 1Þ
 !

: ð2Þ

Since the job processing times are agreeable, applying the principle of minimizing
a linear form over a set of permutations (see, for example, Tanaev, Gordon and
Shafransky [27], p. 189) to the above formula shows that it is optimal to sequence
the jobs in the SPT order such that p11 � p12 � � � � � p1n: This ordering implies
p21 � p22 � � � � � p2n because the job processing times are agreeable.
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Let the jobs be numbered in the SPTorder. Theproblemofminimizing
P

Cj reduces
to partitioning the sequence ð1; . . . ; nÞ into batches. Coffman et al. [12] present an
OðnÞ algorithm to solve the single machine batching problem of minimizing

P
ĈCj

once the job sequence is fixed. Since in this case
P

Cj ¼
P

ĈCj þ
P

gj; the algorithm
of Coffman et al. can be used to minimize

P
Cj for the server scheduling problem

with agreeable job processing times. The latter assumption is quite reasonable. The
job processing times are agreeable when the machines are uniform, i.e., the pro-
cessing time of job j onmachine l is equal to pj=vl, where vl is the speed ofmachine l;
l ¼ 1; 2; or when plj ¼ p for all j and some l.

By modifying equation (2), it is easy to observe that the SPT sequence ð1; . . . ; nÞ is
optimal for the problem of minimizing

P
wjCj when the job processing times and

weights are agreeable, i.e., when w1 � � � � � wn is additionally satisfied. In this
case, an optimal partition into batches can be obtained by the OðnÞ algorithm of
Albers and Brucker [1].

Now, consider the general case of the problem of minimizing
P

wjCj. It is easy to
verify that for an arbitrary job sequence ði1; . . . ; inÞ, we have

X
wjCj ¼

X
wjĈCj þ

Xn

j¼1
wij

Xj

h¼1
p2ih ;

where ĈCj is the completion time of job j in the single machine batching problem
with job processing times p1j and machine setup time s1 þ s2:

Albers and Brucker [1] prove that the single machine batching problem of veri-
fying

P
wjĈCj � Y for a specified Y is NP-complete in the strong sense. If we

choose the values of p2j sufficiently small compared with the values of p1j, we can
easily show that the feasibility problem

P
wjCj � y is equivalent to

P
wjĈCj � Y

for an appropriate y. Thus, the server scheduling problem of minimizing
P

wjCj is
NP-hard in the strong sense.

3. Weighted Number of Late Jobs

It is easy to see that the server scheduling problem of minimizing
P

wjUj is not
easier than the classical single machine problem 1k

P
wjUj: Therefore, it is NP-

hard. We show that it is only NP-hard in the ordinary sense by deriving
pseudopolynomial algorithms for it. We further prove that even minimizing

P
Uj

is NP-hard, unlike its classical single machine counterpart 1k
P

Uj, which is
solvable in Oðn log nÞ time by Moore’s [22] algorithm.

The pairwise job interchange technique can be used to prove the following
lemma.

Lemma 3. For the problem of minimizing
P

wjUj; there exists an optimal batching
schedule in which the early jobs are sequenced in the EDD order and all late jobs are
placed in a single batch sequenced after the last early job.

172 T. C. E. Cheng and M. Y. Kovalyov



This lemma does not fully specify an optimal job sequence for the problem of
minimizing

P
wjUj: Therefore, the main result of the previous section cannot be

used for solving this problem.

Lemma 3 forms the basis of dynamic programming algorithms A(x) and B(x),
where x is an upper bound on the optimal objective value. In these algorithms, the
rules of constructing partial schedules similar to those in the algorithms derived
by Brucker and Kovalyov [9] and Hochbaum and Landy [17] for the single ma-
chine batching problem of minimizing

P
wjUj are used. However, the corre-

sponding dynamic programs are more involved because the latter problem is a
special case of our problem in that the processing times on the second machine are
extremely small and can be set to zero.

We call a batch of early jobs an early batch.

Assume that the jobs are numbered in the EDD order such that d1 � � � � � dn and
s1 þ s2 þ p1j þ p2j � dj, j ¼ 1; . . . ; n. If s1 þ s2 þ p1j þ p2j > dj for some j, then j is
late in any schedule and can be eliminated from further consideration.

In algorithm A(x) and B(x), the jobs are considered in the order 1; . . . ; n. Three
possible scheduling choices for each job are realized in the algorithms. They are
the following:

(i) job j is scheduled as a late job,

(ii) job j is scheduled at the end of the last early batch and all jobs in this batch
will be completed by their due dates,

(iii) job j is assigned to a new early batch and will be completed before the due
date dj.

We now give a justification for algorithm A(x). Consider a partial schedule for the
jobs 1; . . . ; j� 1 constructed by using the above three rules. Let B be the last early
batch in this schedule and let CðBÞ be the completion time of this batch (on
machine 2). We must have

Ci ¼ CðBÞ �
X

r>i;r2B

p2r � di for all i 2 B;

which is equivalent to

CðBÞ � min
i2B

di þ
X

r>i;r2B

p2r

( )

:

We call di þ
P

r>i;r2B p2r the modified due date of job i in batch B and the minimum
of these values the earliest modified due date of batch B.

Consider two partial schedules for the jobs 1; . . . ; j� 1 with the same weighted
number of late jobs w and the same earliest modified due date e of the
last early batches. We will show that the schedule with the minimum com-
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pletion time of the last early batch dominates the other ones, i.e., it can be
extended to a complete schedule without incurring a larger weighted number of
late jobs.

Let job j be added to the last early batch of the non-dominant
partial schedule. In this case, the ‘‘old’’ jobs in this batch and job j will be
early. The earliest modified due date of this batch will either increase by p2j or
it will be equal to dj: The completion time of this batch will increase by
p1j þ p2j:

Since the completion time of the last early batch in the dominant schedule is not
larger than that in the non-dominant schedule, the same situation will arise if job j
is added to the last early batch of the dominant schedule.

If job j starts a new early batch in the non-dominant schedule, then the earliest
modified due date of this batch will be equal to dj: The completion time of this
batch will increase by s1 þ s2 þ p1j þ p2j compared with the previous early batch.
The same situation will arise if job j starts a new early batch in the dominant
schedule.

If j is set to be late in any of the two schedules, the weighted number of late jobs
will increase by wj and the earliest modified due date of the last early batch will
not change, nor will its completion time.

Repeating the above reasoning for jþ 1; . . . ; n proves that the schedule with the
minimum completion time of the last early batch is indeed dominant among those
for jobs 1; . . . ; j� 1 with the same weighted number of late jobs w and the same
earliest modified due date e.

In algorithm A(x), the completion time of the last early job is a function value,
while the weighted number of late jobs and the earliest modified due date in the
last early batch are state variables. More precisely, we recursively compute the
value fjðw; eÞ, which represents the minimum completion time of the last early job,
subject to jobs 1; . . . ; j are scheduled, the weighted number of late jobs is equal to
w, and the earliest modified due date in the last early batch is e. If there are no
early jobs in the schedule, then we set e ¼ 0.

Set d0 ¼ 0; E0 ¼ fd0g, E1 ¼ fd0; d1g; pðijÞmin ¼ mini<r�jfp2rg; pðijÞR ¼
P

i<r�j p2r and

Ej ¼
n

d0; d1; dj; di þ pðijÞji ¼ 1; 2; . . . ; j� 1;

pðijÞ ¼ pðijÞmin; p
ðijÞ
min þ 1; . . . ; pðijÞR ; di þ pðijÞ � dj;

o
; j ¼ 2; . . . ; n:

The initialization is f0ð0; 0Þ ¼ 0, fjðw; eÞ ¼ 1 for ðj;w; eÞ 6¼ ð0; 0; 0Þ, and the re-
cursion for j ¼ 1; . . . ; n, w ¼ 0; 1; . . . ; x; and e 2 Ej is
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fjðw; eÞ ¼ min

fj�1ðw� wj; eÞ;
fj�1ðw; e� p2jÞ þ p1j þ p2j; if e 6¼ dj and

fj�1ðw; e� p2jÞ þ p1j þ p2j � e,

min
h2HjðwÞ

ffj�1ðw; hÞg þ p1j þ p2j; if e ¼ dj; and HjðwÞ 6¼ /,

min
h2GjðwÞ

ffj�1ðw; hÞg þ s1 þ s2 if e ¼ dj and GjðwÞ 6¼ /;

þ p1j þ p2j;

8
>>>>>>>>>><

>>>>>>>>>>:

where

HjðwÞ ¼ fh 2 Ej�1jhþ p2j > dj; fj�1ðw; hÞ þ p1j þ p2j � djg;
GjðwÞ ¼ fh 2 Ej�1jfj�1ðw; hÞ þ s1 þ s2 þ p1j þ p2j � djg:

The four terms in the bracket of the recursive relation correspond to the decisions
that job j is late; job j is early, does not start a batch and the modified earliest due
date of the last early batch is increased by p2j; job j is early, does not start a batch
and the modified earliest due date of the last early batch is changed to dj; and job j
is early and starts a batch, respectively.

The minimum weighted number of late jobs is then equal to the smallest value of
w for which minffnðw; eÞje 2 Eng <1.

Set Pl ¼
Pn

i¼1 pli; l ¼ 1; 2: The time complexity of the algorithm is Oðnxmin
fnP2; dngÞ because there are at most n different values of j, x different values of w,
and jEjj � jEnj � minfnP2; dng for all j.

Clearly, algorithm A(
P

wj) solves the problem of minimizing
P

wjUj in
OðnminfnP2; dng

P
wjÞ time. Thus, this problem is not NP-hard in the strong

sense.

If p2j ¼ p for all j, then jEnj � n2. In this case,
P

wjUj can be minimized in
Oðn3

P
wjÞ time and, hence,

P
Uj can be minimized in Oðn4Þ time.

In algorithm B(x), the function to be minimized is gjðw; dÞ. The meaning of the
function value is the same as that in A(x), i.e., it is the completion time of the last
early job in a partial schedule. The state variables are the number of jobs j
scheduled so far, the weighted number of late jobs w, and the difference d between
the final and current total processing time of jobs in the last early batch on
machine 1. Notice that d ¼ 0 when the last early batch contains all its jobs.

The initialization is g0ð0; 0Þ ¼ 0; gjðw; dÞ ¼ 1 for ðj;w; dÞ 6¼ ð0; 0; 0Þ; and the re-
cursion for j ¼ 1; . . . ; n, w ¼ 0; 1; . . . ; x; and d ¼ 0; 1; . . . ;minfP1; dng, is

gjðw;dÞ¼min

gj�1ðw�wj;dÞ;
gj�1ðw;dþp1jÞþp2j; if gj�1ðw;d�p1jÞþp2j�dj,

gj�1ðw;0Þþ s1þdþs2þp2j; if gj�1ðw;0Þþ s1þdþs2þp2j�dj:

8
><

>:
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The three terms in the bracket of the recursive relation correspond to the decisions
that job j is late, job j is early and does not start a batch, and job j is early and
starts a batch, respectively.

The minimum weighted number of late jobs is equal to the smallest value of w for
which minfgnðw; dÞjd ¼ 0; 1; . . . ;minfP1; dngg <1.

A justification for algorithm B(x) is that a partial schedule in the state ðj;w; dÞ
with the minimum completion time of the last early job dominates any other
schedule in the same state.

The time complexity of the algorithm is OðnxminfP1; dngÞ because there are at most
n different values of j, x different values of w andminfP1; dng different values of d. If
p1j ¼ p for all j, then there are atmost n different values of d. In this case,

P
wjUj can

be minimized in Oðn2
P

wjÞ time and
P

Uj can be minimized in Oðn3Þ time.

Using standard rounding techniques (see, for example, Sahni [26] and Kovalyov
[20]), we can transform algorithm A(x) for the case p2j ¼ p; j ¼ 1; . . . ; n; and
algorithm B(x) for the case p1j ¼ p; j ¼ 1; . . . ; n; to a fully polynomial time
approximation scheme (FPTAS) similar to the way it is done by Brucker and
Kovalyov [9] for the single machine batching problem.

The time complexity to generate a schedule with a weighted number of late jobs
that is no more than 1þ e times the optimal value is Oðn4=eþ n4 log log nÞ and
Oðn3=eþ n3 log log nÞ, respectively.

Now assume that the processing times p1j and p2j are arbitrary.

Theorem 1. The problem of minimizing the number of late jobs is NP-hard, even if
the setup times are equal and there are two distinct due dates.

Proof. A polynomial reduction from the NP-complete problem Equal Cardinality
Partition (see Garey and Johnson [14]) is used.

Equal Cardinality Partition: Given positive integers e1; e2; . . . ; e2k and E satisfyingP2k
j¼1 ej ¼ 2E; does there exist a subset X of the set f1; . . . ; 2kg such thatP
j2X ej ¼ E and jX j ¼ k? Assume, without loss of generality, that ej � E for each

j because otherwise the solution is trivial.

Let an instance of Equal Cardinality Partition be given. Compute H ¼ 2E þ 2.
Construct an instance of the number of late jobs problem, in which there
are 2k þ 1 jobs: enforcer job 0 and 2k partition jobs. The job processing times and
due dates are given as follows: ðp1;0; p2;0; d0Þ ¼ ð1; 1; 3E þ 2Þ and
ðp1j; p2j; djÞ ¼ ðej;H � 2ej; dÞ, d ¼ kH þ E þ 2, j ¼ 1; . . . ; 2k. Note that H is
chosen such that p2j ¼ H � 2ej ¼ 2ðE � ejÞ þ 2 > 0. Both setup times are equal:
s1 ¼ s2 ¼ E.

We prove that Equal Cardinality Partition has a solution if and only if there exists
a schedule for the constructed instance of the number of late jobs problem with an
objective value

P
Uj � k.
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Suppose first that Equal Cardinality Partition has a solution and X is the required
set. Construct a schedule S having a structure for the early jobs shown in Fig. 2.

In schedule S, there is one early batch. This batch consists of the enforcer job 0
and jobs of the set X . Job 0 completes at time d0 and the latest of the jobs in X
completes at time d. Therefore, there are exactly k late jobs in S.

Suppose now that a schedule S0 with
P

Uj � k exists. In this schedule, there must
be exactly one early batch. Assume that there are two early batches B1 and B2

sequenced in this order. The earliest completion time for the batch B2, CðB2Þ, is
achieved when job 0 is early. In this case, at least k partition jobs must be early.
Let us estimate CðB2Þ:

CðB2Þ � 2ðs1 þ s2Þ þ p1;0 þ p2;0 þ
X

j2B1[B2nf0g
ðp1j þ p2jÞ

¼ 4E þ 2þ kH �
X

j2B1[B2nf0g
ej � kH þ 2E þ 2 > d:

Therefore, at least one job in B1 [ B2 is late, which is a contradiction. The same
situation arises when there are more than two early batches. Thus, there is exactly
one early batch that we denote by B.

Assume that at least k þ 1 partition jobs are early. In this case, for the completion
time of the batch B, we have

CðBÞ � s1 þ s2 þ
X

j2Bnf0g
ðp1j þ p2jÞ � 2E þ ðk þ 1ÞH �

X

j2Bnf0g
ej

� ðk þ 1ÞH > kH þ E þ 2 ¼ d;

because H ¼ 2E þ 2 > E þ 2. Hence, at least one job in B is late, a contradiction.

It follows that exactly k partition jobs and job 0 comprise the only early batch B in
S0. According to Lemma 3, assume that job 0 precedes all the partition jobs in B.

Set X ¼ Bnf0g. For the completion time of job 0, we have

C0 ¼ 2E þ 2þ
X

j2X

ej � d0 ¼ 3E þ 2:

Fig. 2. Schedule for early jobs in S
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Hence,

X

j2X

ej � E: ð3Þ

For the completion time of the batch B; we must have

d ¼ kH þ E þ 2 � CðBÞ ¼ s1 þ s2 þ 2þ
X

j2X

ðp1j þ p2jÞ ¼ 2E þ 2þ kH �
X

j2X

ej;

from which we get
P

j2X ej � E: This inequality and (3) imply
P

j2X ej ¼ E; as
required. (

Since minimizing
P

Uj is NP-hard for arbitrary p1j and p2j; no FPTAS exists for
this problem unlessP ¼NP: Indeed, if such a FPTAS would exist we could have
set e ¼ 1=ðnþ 1Þ and found a schedule with a number of late jobs exceeding the
optimal value by at most n=ðnþ 1Þ < 1; i.e., an optimal schedule, in polynomial
time.

Notice that a FPTAS might exist for the general problem of minimizing
P

wjUj.

4. Conclusions

The problem of scheduling a single server that processes n jobs in a two-machine
flow shop has been studied. A machine dependent setup time is needed whenever
the server switches from one machine to the other. Each processing operation and
each setup operation is performed by the server. For many regular performance
criteria, the problem is reduced to a single machine batching problem. Known
algorithms for the latter problem can be used to solve the former ones. The
derived computational complexity results are given in Table 1.

An open question is the complexity of the problem with the total completion time
criterion when processing times are not agreeable. Further research can be un-
dertaken to resolve this question. Problems with more than two machines and
more than one server are also of interest for further research.

Table 1. Computational complexity of the server scheduling problem

Objective function,
additional assumptions

Complexity

Lmax; Tmax O(n log n)
fmax O(n log (u)v) log P)P

Cj OpenP
Cj, agreeable plj O(n log n)P

wjCj strongly NP-hardP
Uj NP-hardP

Uj; p1j ¼ p Oðn3ÞP
Uj; p2j ¼ p Oðn4ÞP

wjUj NP-hard, pseudopolynomially
solvable
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